A Plan for DCAF in Korea

Kihyeon Cho

Center for High Energy Physics (CHEP)

Kyungpook National University

Contents

- Introduction
 - Why DCAF/Grid?
- DCAF in Korea (so-called KCAF)
 - Current Resources
 - Step for Goal of KCAF
 - A Design of KCAF
- Conclusions

Why DCAF/Grid in future?

- CAF (Central Analysis Farm)
 - Limited resources and spaces at FCC
 - At Run IIb, data size is 6 times more than now.
 - In case of network problems at FCC
- DCAF
 - Users around regional area and/or around the world
 - Korea, Toronto, Karstrule,
- Call DCAF in Korea as "KCAF"

Proposed Schemes

Where is KCAF?

Man Power

- Center for High Energy Physics (CHEP) at Kyungpook National University (KNU)
 - Kihyeon Cho: Design
 - Youngdo Oh : Post-doc
 - Install CDF software and CAF related program
 - Will visit Fermilab (August 10-20, 2002) to solve the technical problems
 - Jaeyoung Lee : System manager
 - Install Hardware and Software
 - Eunjeong Son : Graduate Student
 - Run CAF, MC production programs and SAM
 - DongHee Kim : Advisory
- Seoul National University (SNU)
 - Bockjoo Kim : Advisory

Current Resources

- CPU: 40 CPU (1.7 GHz) Clusters
- HDD
 - about 3 Tbyte (80 GB IDE X 40)
 - 100Gbyte Raid + 600 Gbyte Tape library
- Network
 - CHEP ---- KNU ---- KOREN ---- Star tap ---- Fermilab1Gbps 1 Gbps 45Mbps ?
- The actual network performance between CHEP and FNAL
 - 3~5 Mbps (30~50 Gbyte/day).

PC Clusters

Object	ltem	Quantity
File Server	Pentium III 866MHz	2
	(dual)	
Login and Compile Server	Pentium IV 1.7 GHz	1
	AMD 1.47 GHz	1
	Pentium III 1 GHz (dual)	1
Main CPU	Pentium IV 1.7 GHz	16
	AMD 1.47 GHz	14
	AMD 1 GHz	5
UPS	10 KW (30 min)	1
	100 GB HDD (RAID)+	
NAS	600 GB Tape library	1
Network Switch	24x100Mbps +	1+1
	2 x 1 Gbps	

Step for Goal of KCAF

- Step 1. To make MC production farm using KCAF
 - First, we start to construct 20/40 CPU test-bed for KCAF.
 - After policy inside of CHEP (another test-bed for EUDG) and between CDF, we will decide how many CPUs for actual MC generation farm will be used among this year's planed 100 CPUs.
- Step 2. To handle real data
 - To extend the KCAF to the real data handling system using SAM,
 Gridftp, etc after settling down real data handling system.
- Step 3. Final goal of CDF Grid
 - A gridification for KCAF related with EUDG and CDF Grid

Road Map

- Software
 - ✓ CDF Software
 - FBSNG for batch job
- 2. Kerborse
 - Client : login from Korea to Fermilab
 - Server : login from Fermilab to Korea
 - KDC : Client & Server Trust (⇒ Need to discuss)
- 3. Data Handling System
 - Glasgow, Italy and Yale use Data Handling System.
 - SAM station needs to be installed on 1 PC work node.
- 4. OS for Fermilab Red Hat Linux 7.2 with Kernel 2.4.18
- 5. Fundamental license problem for DB

Current CAF at FCC

A Design of KCAF

- Crone of CAF
- Users
 - Korean Group
 - Other Asian Group
 - Other around the world
- Technical request
 - To connect between the 1Tbyte buffer and fcdfsam at FCC.

Conclusions

- Grid is one of world trend at High Energy Physics.
 Someday we should use it even CDF.
- At the first step, DCAF is recommendable.
- Is it the first time to make DCAF outside US? Anyway, why not try?
- Any comments?